Variants of finite full transformation semigroups
نویسندگان
چکیده
The variant of a semigroup S with respect to an element a ∈ S, denoted S, is the semigroup with underlying set S and operation ? defined by x ? y = xay for x, y ∈ S. In this article, we study variants T a X of the full transformation semigroup TX on a finite set X. We explore the structure of T a X as well as its subsemigroups Reg(T a X) (consisting of all regular elements) and E X (consisting of all products of idempotents), and the ideals of Reg(T a X). Among other results, we calculate the rank and idempotent rank (if applicable) of each semigroup, and (where possible) the number of (idempotent) generating sets of the minimal possible size.
منابع مشابه
On certain semigroups of transformations that preserve double direction equivalence
Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).
متن کاملUNIVERSAL COMPACTIFICATIONS OF TRANSFORMATION SEMIGROUPS
We extend the notion of semigroup compactification to the class of transformation semigroups, and determine the compactifications which are universal with respect to some topological properties.
متن کاملAutomorphisms of partial endomorphism semigroups
In this paper we propose a general recipe for calculating the automorphism groups of semigroups consisting of partial endomorphisms of relational structures with a single m-ary relation for any m ∈ N over a finite set. We use this recipe to determine the automorphism groups of the following semigroups: the full transformation semigroup, the partial transformation semigroup, and the symmetric in...
متن کاملSemigroups of rectangular matrices under a sandwich operation
Let Mmn =Mmn(F) denote the set of all m× n matrices over a field F, and fix some n×m matrix A ∈ Mnm. An associative operation ? may be defined on Mmn by X ? Y = XAY for all X,Y ∈ Mmn, and the resulting sandwich semigroup is denoted Mmn = Mmn(F). In this article, we study Mmn as well as its subsemigroups Reg(Mmn) and EA mn (consisting of all regular elements and products of idempotents, respecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 25 شماره
صفحات -
تاریخ انتشار 2015